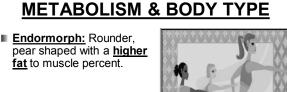
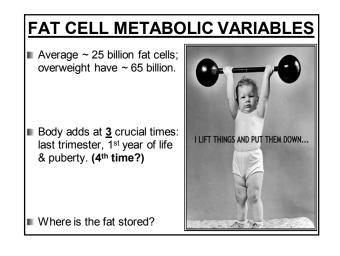


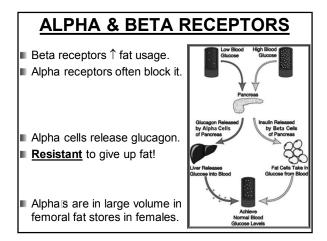
Ethan AH Sims, Twins Overeat, New Eng J Med 322 (May 1990)


SIMS STUDY FINDINGS

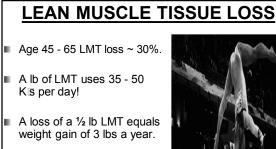
Identical weight gain of identical twins when overfed.

Some sets gained 8.21 kg (18) & others 13.3 kg.(29)

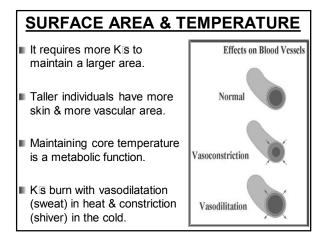

Genetics govern energy as fat or LMT via expenditure.

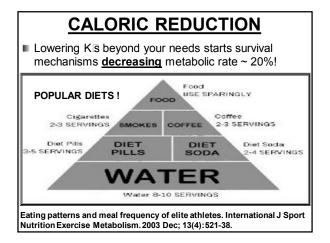


- Mesomorph: Strong bone, rectangular frame, & <u>high</u> <u>muscle</u> to fat ratio.
- Ectomorph: Thin, linear body shape, narrow waist. <u>Highest metabolism.</u>



AGE & FATHER TIME


- Stanford Nutrition Studies shows an <u>average</u> weight gain of 25 lbs between the ages of 35 - 60.
- Findings: ~ 99.8% of all Ks ingested were utilized. ~ 0.2% of all the Ks consumed were not utilized.


Stanford Preventive Research Center School of Medicine

- MAYBE 25 lbs in 10 years.
- 50 lbs in 20 years. Ш.

\downarrow CALORIE INTAKE \downarrow METABOLISM

- KIS□ The body uses LMT as fuel. WHY?
- Not enough K is to provide energy for metabolism!

Nutrient Deficiency

- Low Ks ↓ vitamin B12, electrolyte & iron absorption.
- Organ & Bone Damage
- Long term, low K can ↑ osteopenia/osteoporosis.
- Long term, low K can damage the kidneys & heart.

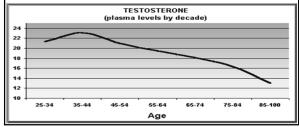
LOW CALORIE INTAKE Lowers metabolic rate! ■ Studies show an ↑ in fat storage with K restriction!

The lowest K intake had the highest body fat!

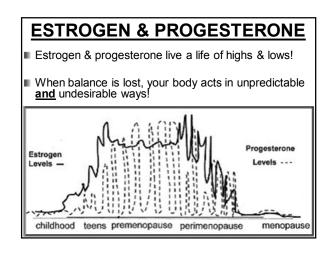
Eating patterns and meal frequency of elite athletes. International J Sport Nutrition Exercise Metabolism. 2003 Dec; 13(4):521-38.

WOMEN BEWARE! Often females (athlete s too) tend to restrict calories! Low ks alters reproduction & contributes to B.A.D. Ш. Bone Loss, Amenorrhea & Disordered Eating. thlete Triad Energy Deficit Bone Loss/Osteoporosis Disordered Eating

MORE K'S = WEIGHT


HORMONE METABOLISM

- Growth Hormone: High intensity, high volume, н. low rest training magnifies release. (TUT)
- **1.** [↑] GH mobilize fatty acid, spares glucose.
- 2. Eat ASAP after training = ↑ pulses!


	EXERCISE	INTESITY	GH SECRETION
1.	Running	High	266% ↑
2.	Spinning	High	114% ↑
3.	Weight Training	70% 1RM	300% ↑
4.	Weight Training	85% 1RM	400% ↑
GH release during resistance exercise. Sports Med. 2002; 32(15):987-1004			

HORMONE METABOLISM

- Testosterone: High intensity, high volume Ш. training **raises** levels, \uparrow protein synthesis.
- 1. Programming (giant sets, super sets, etc)
- 2. Adequate calories & protein.(30-35+) & rest!

ESTROGENS 3 naturally occurring. Estriol (E3) Primary estrogen during pregnancy. Estradiol (E2) Primary estrogen when not pregnant. Estrone (E1) Primary estrogen post reproductive age. **FESTOSTERONE'S LITTLE SISTE**

HORMONE HEALTH

Estrogen(3), progesterone, \downarrow test & \uparrow GH.

■ Two <u>HUGE</u> times when estrogen ↑ fat storage.

■ Estrogen ↑ fat storage in breasts, hips, thighs & butt!

ESTROGEN & THYROID LEVELS

- Estrogen \uparrow fat storage during puberty & pregnancy.
- Other hormones 1 fat storage.
- Glucagon secreted by the pancreas.
- Epinephrine secreted by the adrenal gland.
- Norepinephrine secreted by nerve endings.

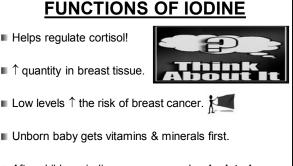
Fluctuating hormones can alter thyroid function!

T3 & T4 levels determine proper thyroid function.

■ T3 → 2-4mcg/dl

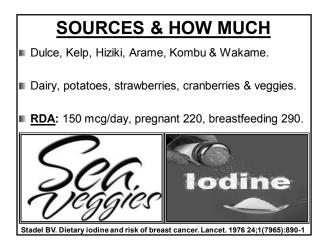
 $T4 \rightarrow 4-12mcg/dl$

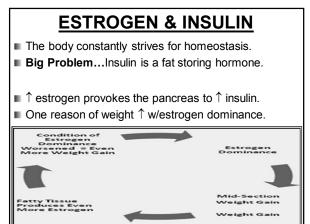
TRIODO-THYRONINE & THYROXINE

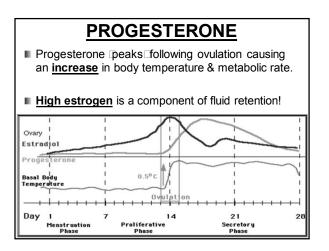

AA tyrosine based hormones.

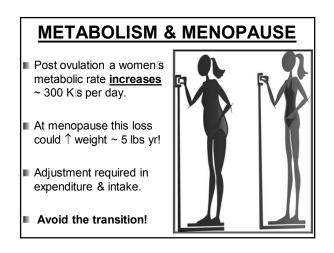
■ **lodine required** to produce T3 & T4.

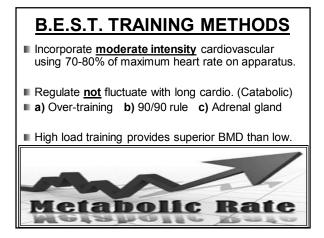
T3 & T4 helps control CHO, fat & protein metabolism!

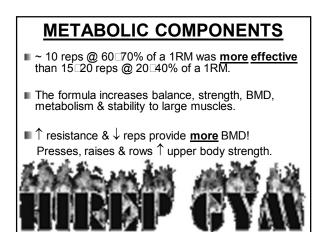



After children, iodine reserves can be **depleted**.


Sacrifice your own well being! Motherhood is tough!






ESTROGEN & CORTISOL Estrogen & cortisol (stress hormone) levels fluctuate. Response to fluctuation Cravings! CHO and fats! Another culprit serotonin. Pleasure factory. If cortisol is ↑ & serotonin ↓, usually crave sweets. If cortisol is ↓ & serotonin ↑, usually crave salty or fat.

METABOLIC COMPONENTS

- Exercises done standing were used to provide additional weight bearing forces. (recruitment)
- Core training exercises were added with T.U.T.
- <u>Stretching</u> was incorporated to reduce stiffness. Confusion principle applied every 6 □ 8 weeks.

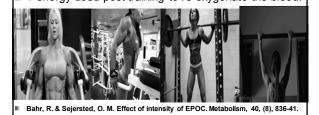
STRENGTH TRAINING METABOLISM

Higher intensity strength training uses lots of K s & <u>increases</u> fat oxidation, LMT & metabolic rate.

TOTAL WORKOUT TIME

- ~ 60 minutes:
- Cortisol levels begin to <u>rise!</u>
- ↑ muscle catabolism.
- ↓ in MPS.
- Testosterone & GH levels ↓.
- Note to self: Stop texting & lift!

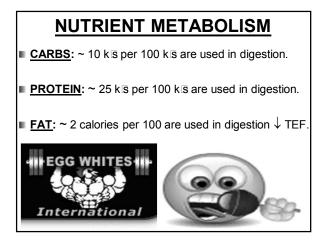
POST EXERCISE METABOLISM


- Excess Post Oxygen Consumption.
- Number of calories burned post exercise.

During exercise, large amounts of oxygen is used.

Post exercise, the body continues to expend energy.

POST EXERCISE METABOLISM Evidence shows that resistance training produces greater EPOC responses than aerobic exercise. <u>Findings</u>: ↑ intensity weight training ↑ metabolic rate. ↑ energy used post training to re-oxygenate the blood.

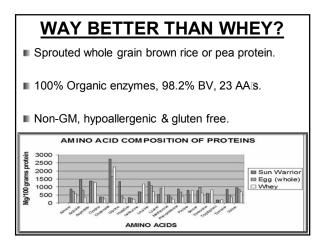


REST & RECOVERY

~ 3 days off per body part.
 ~ 60 90 seconds between sets.

Type 2 fibers (anaerobic) <u>need</u> rest.
 Glutamine ↑ recovery. Essential AA ↓ MPB.

CALORIC COMPOSITION


- CARBS: ~ 4 grams per kg/bw daily.
- **<u>PROTEIN</u>**: ~ 1.2-1.7g per kg/bw daily with a ↑ BV. Excessive protein can affect calcium absorption.
- FAT: ~ 20% from monounsaturated & Omega 3 s to <u>maintain</u> healthy triglyceride levels.
- Carbs prior to <u>and</u> within 2 hours after training allows insulin to regulate catabolic hormones.

OMEGA'S

- <u>Research</u>: ↑ CHO metabolism, ↓ BP & triglycerides.
 Cold water fish, algae, eggs & green leafy veggies.
- SOME OILS & SEEDS: Hemp, Flax, Grape Seed, Pumpkin, Soy, Canola & Walnut. Omega 9 = Olive Oil.

