Metabolic Conditioning - The New Way to Train

Fabio Comana, MA., MS., NASM CPT, CPES & PES; ACE CPT & LWMC; ACSM HFS, NSCA CSCS; CISSN

National Academy of Sports Medicine - fabio.comana@nasm.org

Introduction	<u>NOTES</u>
As Exercise: Defined as high work rate-type exercise workouts with little-to-no recovery intervals	
aiming to boost calories expended during and after the workout (EPOC).	
✓ Load (force generated)	
✓ Volume (amount of work performed)	
 Power (rate of performing work) 	
3 Types of Responses:	
<u>Client Concerns:</u>	
\checkmark Fatigue-technique relationship:	
• Isolated trauma from pattern overload - potentially stresses tissues and joints excessively,	
especially when the body is physically un- or underprepared. <i>Example</i> : Rhabdomyolysis - condition of excessive muscle fiber breakdown with fiber	
contents spilling into bloodstream and passing to kidneys - harmful and potential organ	
failure	
 Low-to-moderate stress = immune-boosting effect 	
• High-stress = immune-suppressant effect	
 Muscle soreness (DOMS) and exercise adherence Psychological and Emotional Impact on adherence 	
✓ Appropriate experience / DOMS?	
✓ 56.2 % of attrition associated with intensities that are too hard.	
 Always weigh small initial gains vs. cognitive and emotional effect 	

Total Daily Energy Expenditure (TDEE)

<u>NOTES</u>

Resting Metabolic Rate (RMR)

<u>Up</u> •	- and Down-regulation: Lean Body Mass boosts RMR up to 7-8 % ✓ Studies demonstrate 2 - 4½ lb. muscle mass gained (8-52 weeks) ✓ RMR = ~ 1,200 - 1,500 kcal / day = additional 100 kcal/ day 10½ lb. (4.5 Kg) / year ○ Attributed to cost of maintaining muscle mass, plus conditioning effects on metabolism
•	EPOC can increase RMR higher for a few hours (equivalent to 15 − 25 % of kcal of exercise) ✓ Higher-intensity or fatigue-inducing bouts can increase EPOC up to 38 hours
•	Age decreases RMR by ~ 2 % / decade (after late 20'2 − early 30's) ✓ Generally due to reduced exercise volume/intensity and loss of muscle.
•	Diets / starvation can suppress RMR by up to 20 % ✓ Example: IF BMR = 1,500 kcal / day, 20 % reduction = 300 kcal/day31 lbs. (14 Kg) / year
	Thermic Effect of Food (TEF)
•	 Eating increases metabolism slightly (peaks within 60 minutes after eating). ✓ Foods raise the TEF at different rates: Fats = TEF of ~ 3 %. Carbohydrates = TEF of ~ 7 % (fibrous vegetables up to ~ 20 %). Protein = TEF of ~ 30 % Due to lack of protein storage sites in body (99 % stored as living tissue) or conversion cost to glucose / fats
•	 Frequency of Food Intake influences metabolism - irregular meal frequency (Farshchi, <i>et al.</i>, 2004) increases potential for obesity and lowers TEF. ✓ TEF is not different between 3 and 5 isocaloric meals / day (mixed results on fewer, larger meals vs. more frequent, smaller meals)
•	 Effects of Specific Foods: ✓ Thermogenic herbs and spices (e.g., chilli peppers (~20%), horseradish, mustard, cinnamon, fennel seed, garlic, ginger, ginseng, guarana, and turmeric. ✓ Water (Boschmann, et al., 2003) consumption of 17 oz. (500 ml) of cold water (6° C / 43° F) increases TEF by 30 % for 10 min to 40 min post-prandial (1.5 L / day = 17,400 kcal) ○ Due to thermoregulation plus osmosensitive-structures preventing blood dilution (cost to maintain osmotic pressure). … ~ 5 lb. (2½ Kg) / year

Effect of TEPA

• Does traditional exercise programming really contribute to **INITIAL** weight loss?

Measure	Men	Women
Average weight	194.7 lb. (88.5 Kg)	164.7 lb. (74.9 Kg).
Daily Caloric Intake	2,504	1,771
Weekly Caloric Intake	17,528	12,397
Weekly Kcal (Health)	1,000 kcal	1,000 kcal
Weekly Kcal (Weight Loss)	2,000 kcal	2,000 kcal
3 x 30 min @ 5 mph	1,207 kcal (6.9 %)	1,021 kcal (8.2 %)
4 x 30 min Higher-intensity Circuit (80:20	1,728 kcal (9.9 %)	1,440 kcal (11.6%)
work-recovery)	(432 kcal / session)	(360 kcal / session

Developed by Fabio Comana, MA., MS., @All Rights Reserved.

What we Know and Should Consider	<u>NOTES</u>
 #1 reason people (20 - 55-year old) exercise = weight loss 	
 Butconsider the contribution of exercise initially. 	
 Should we emphasize weight loss initially given poor tolerance for volume, intensity and discomfort? 	
Explore PA and NEAT.	
 What does research tell us? Study: Mortality data over a 12-year period (N = 17,013) ✓ Even in physically-active individuals – strong correlation between sitting and mortality risk. ✓ Physical activity does not cancel all ill effects of being sedentary. ✓ Sedentary effects: ○ Reduced HDL levels = increased CVD risk. ○ Decreased muscle LPL activity = elevated blood TG = increased CVD risk. 	
 <u>Study</u>: Non-exercisers (Low BMI vs. High BMI) ✓ Low BMI group average 150 min more movement / day. ✓ Averaged 352 kcal more / day = <u>36.7 lbs. (16.7 Kg) / year</u> 	

Metabolic Profile

Time of Day	Activity	Suggested Activity	
0:00 – 6:30 am	Sleep	\checkmark	
6:30 – 7:30 am	Prepare for Work	(10 min walk, exercises?)	
7:30 – 8:15 am	Commute (drive)	\checkmark	
8:30 – 12:00 pm	Seated – computer	Breaks, bathrooms, walk to coworkers	
12:00 – 1:00 pm	Lunch - seated	Options ?	
1:00 – 5:00 pm	Seated – computer	Breaks, bathrooms, walk to coworkers	
5:00 – 6:00 pm	Commute (drive)	\checkmark	
6:00 – 7:30 pm	Misc	Options ?	
7:30 – 10:30 pm	Sit – TV / read	Options (commercials, etc.)	
10:30 – 11:00 pm	Prepare for bed	\checkmark	
11:00 – 12:00 am	Sleep	\checkmark	
Be creative and find simple, implementable solutions			

How do we Boost Metabolism with Exercise?	
Induce stress = Neuro-endocrine Responses	
 Manipulate program variables to keep shock (stress) upon body's systems – increases hormonal responses = stimulates protein synthesis) ✓ Variables: Load (intensity), volume (sets x reps, time), frequency, interval-repetition, tempo (TUT), and recovery-intervals ✓ Also consider age, gender training status and dietary intake on these responses. 	

•

Resistance Training Strategies

NOTES

Overall Goal - increase volume / work-rate performed with reduced recovery intervals

1. Undulating / Non-linear periodizations: (aka Muscle Confusion)

- Strategy:
 - ✓ Alternate between endurance, hypertrophy, strength and power in <u>NO ORDER</u>
 - ✓ Vary programming variables on a frequent basis (i.e., between-week, within week, within session, within exercise).

-	Use	30/33 - 00% of body weight for load.		
	v	<i>Example:</i> <u>Complex Sets</u> – strength coaches working	ng with athletes (grew out of super-setting /	
		compounds sets).	-	
		\circ 2 – 3 sets x 5 – 6 reps; 45 – 90 sec recovery.		
		\circ 4 – 6 multi-joint exercises.	-	
		Olympic Squat		
		 Push Press Dead lift 	=	
		 Front Squat 	_	
		Low pull		
			-	
	\checkmark	Example: Hybrid Sets – Simple-to-complex (focu	is upon one major body part):	
		• Use $20 - 60$ % of body weight		
		\circ 2 – 3 sets x 5 reps; 30 – 60 sec recovery between set		
		 Bb Half Shoulder Press 		
		Bb Full Shoulder Press	-	
		 Bb Upright Kow to Shoulder Press Bb Hang Clean to Shoulder Press 		
		 Bb Power Clean to Shoulder Press 	-	
	\checkmark	Example: Hybrid Sets – Multi-planar (focus upo	n one major body part):	
		\circ 2-3 sets x 4 reps; 30-60 sec recovery between se	ets: –	
		 Db Standing Bilateral Shoulder Press 		
		 Db Standing Bilateral Front Step Incline Press 	-	
		 Db Standing Bilateral Rear Overhead Press 		
		 Db Standing Unilateral Frontal Plane Press (each) Db Standing Unilateral Transverse Plane Press (each) 	-	
		 Do Standing Official Transverse France Fress (each Vary between static or dynamic BOS 	1)	
		• Vary between state of dynamic Dos.	_	
	✓	Example: Whole body Hybrid Sats (constant ext	ernal load)	
	•	0 = 2 - 3 sets 60 - 90 sec recovery		
		Db Push-up x 10	-	
		 Db Row from Push-up Position x 5 per arm 	_	
		 Front Plank 30 seconds 		
		 Db Single-left Romanian Dead Lift x 10 per leg 	-	
		 Db Standing Shoulder Press x 10 per arm 		
		 Db Biceps Curi X 10 Db Poor Lungo with Trunk Potation X 10 par side 		
		 Do Real Lunge with Trunk Rotation X to per side Ontion: Perform one of each in series and complete 	# repetitions for set	
		• Option. I enform one of each in series and complete		

Aerobic Training Strategies	
Overall Goal - after establishing aerobic base (VT1) - increase intensity of work to boost caloric burn and EPOC	
 Aerobic Interval Format: Moderate-duration bouts of slightly-higher intensities of aerobic work, followed by a lower-intensity active recovery. ✓ Example: ≥ 3 min work interval + active recovery (1:2 to a 10:1 work-to recovery intervals) ✓ Shorter bouts allow greater volume of higher-intensity work. 	
 Split routine Format: Multiple shorter cardio sessions with ≥ 5 minute recovery between two – double EPOC 	

1.

2.

1.	 Anaerobic Intervals / Supramaximal Interval Training Format – Tabata-style / La Forgia) Short-bouts (e.g., 20 seconds of near maximal efforts) with very short recovery intervals. 	<u>NOTES</u>
"	Recognize that energy depletion is inevitable - always train energy systems effectively" <u>> 10 % Decrement in Performance = Garbage Reps !!!</u>	
2.	 Pyramids / Step-wise Format: Intervals building by 10 % every 4 - 5 minutes Equal to ~ 10 bpm (1 RPE) increase / stage 	
3.	 Multi-mode cardio Format: Vary mode, intensity and duration per modality Target 20 - 60 minutes of total volume 	
1.	 Blended / Multi-Mode Circuit Format: Any resistance format: 5 - 10 minutes. Any cardio format (aerobic): 3+ minutes. ✓ Aerobic is optimal for adequate anaerobic pathway recovery (fatigued during resistance). ✓ Split routine cardio = multiple EPOCs 	

<u>References</u>

- 1. Boschmann, et al., (2007). Water drinking induces thermogenesis through osmosensitive mechanisms. Journal of Clinical Endocrinology & Metabolism 92:3334–3337
- 2. Boschmann, et al,. (2003). Water-induced thermogenesis. The Journal of Clinical Endocrinology and Metabolism. Dec;88(12):6015-9.
- 3. Chaiyata, et al., (2003) Effect of chili pepper (Capsicum frutescens) ingestion on plasma glucose response and metabolic rate in Thai women." J Med Assoc Thai;86(9):854-60.
- 4. Dulloo, et al., (1999). Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr. Dec;70(6):1040-5.
- 5. Dulloo, et al., (2000). Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. Int J Obes Relat Metab Disord. Feb;24(2):252-8.
- 6. Farshchi, et al. (2004). Decreased thermic effect of food after an irregular compared with a regular meal pattern in healthy lean women. Int J Obes Relat Metab Disord. May;28(5):653-60.
- 7. Fleck & Kraemer (1997); Designing Resistance Training Programs (Human Kinetics)
- 8. Halton, et al., (2004). The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J Am C Nutr. Oct;23(5): 373-85.
- 9. Hamilton, et al., (2008). Current Cardiovascular Risk Reports, 2, 292-298.
- 10. Hill, et al., (2009). Exercise and Sports Science Reviews, April; 37(2):93-101.
- 11. Holt, et al., (1995). A satiety index of common foods. Eur J Clin Nutr. Sep;49(9):675-90.
- 12. Katzmarzyk, et al., (2009). Medicine and Science in Sports and Exercise, 41(5): 998-1005.
- 13. Levine, JA, et al., (2009). Move a Little, Lose a Lot (Three Rivers Press).
- 14. Tabata, et al., (1996), Medicine and Science in Sports and Exercise, Oct: 28(10):1327-30.
- 15. Tentolouris, et al., (2008) Diet-induced thermogenesis and substrate oxidation are not different between lean and obese women after two different isocaloric meals, one rich in protein and one rich in fat. Metabolism.57(3):313-20.
- 16. Van Pelt, et al., (2001). Age-related decline in RMR in physically active men: relation to exercise volume and energy intake. Am J Phys vol. 281:3: E633-E639